WORKING WITH NATURE TRAINING SERIES

NOV. 17, 2021

Designing with nature-based solutions in rural areas and open space

LOUISIANA WATERSHED INITIATIVE

working together for sustainability and resilience

- Nature-Based Solutions Program overview
- Natural channel design
- Mollicy Farms case study
- Questions

NATURE-BASED SOLUTIONS PROGRAM OVERVIEW

MAXIMIZE NATURAL FUNCTIONS OF THE FLOODPLAIN

- Fund projects that harness natural features to reduce flood risk and improve water quality
- Provide training and technical resources to advance understanding and adoption of nature-based solutions
- Prioritize nature-based solutions across state programs and projects
- Use tools to quantify benefits and measure performance of nature-based projects

Presentation overview

- Traditional rural land use and drainage practices related to river system functions
- Natural channel design
- Case study: Cypress Creek at Meyer Park in Houston

Traditional rural land practices that affect river system functions

Traditional rural and suburban drainage practices that affect river system function

Maximum conveyance

- Straightening
- Channelization (constant x-sect & slope)
- Oversizing (10- to 100-year storm)

Minimal floodplain footprint

- Prescribed incision (floodplain disconnection)
- Buried storm sewer pipes
- Regional stormwater detention

Results of rural practices: hydromodification

- Increased flash flows
- Reduced base flows
- Increased sediment loads
- Increased channel erosion

Photos courtesy of HCFCD

Stormwater BMPs

Now we attempt to correct hydromodification through stormwater **Best Management Practices** in the watershed.

- Site sediment controls (silt fences, hydromulching and sodding, sediment capture ponds)
- Regional and onsite detention/retention
- Low-impact development and pre-development hydrology

Sounds good...so what's the problem?

Problems with stormwater BMPs

Stormwater BMPs deal only with the watershed and not the channel, meaning they don't address **in-channel processes**, such as:

- Continued channel rectification
- Continued channel response to past and ongoing watershed hydromodification

Continued channel rectification

Channel response to past and ongoing

SVCA

ENVIRONMENTAL CONSULTANTS

hydromodification

"When the works of man run contrary to the natural, stable tendencies of the river, the river eventually dominates."

- Dave Rosgen, 1996

Photos courtesy of NRCS

Fluvial geomorphology

THE SCIENCE OF THE FORMATION OF RIVERBEDS, FLOODPLAINS AND STREAMS BY WATER

Optimized natural channel forms

LATERAL (PLANFORM) DYNAMIC EQUILIBRIUM

Heading Angle $\Psi = c \sin(s)$ s = Distance Downriver (radians)

Path of minimal directional variance

Path that represents the most-likely random walk

Optimized natural channel forms

LONGITUDINAL VERTICAL DYNAMIC EQUILIBRIUM

Optimized natural channel forms

CROSS-SECTIONAL AND TEMPORAL DYNAMIC EQUILIBRIUM

Alluvial channel response to hydromodification

SVCA

ENVIRONMENTAL CONSULTANTS

- Alluvial streams form both the stream channel and their adjacent floodplain.
- All alluvial streams respond in this same fashion in response to disturbance.

Simon's (1989) model of channel response in disturbed alluvial channels

Bank failure mechanism in incised channels

COMBINATION OF EXCESS SHEAR STRESS AND MASS FAILURE

Upland/hillslope vs. in-channel sediment loads

Sediment from stream channels account for as much as 85% of watershed sediment yields, and streambank retreat rates as high as 24 feet per year have been documented (Simon, A. et al, 2000).

1 acre x 2" erosion over 1-year period = 270 cubic yards x 1.1 tons/cy = 295 tons/year

210' long x 15' tall eroding failing/retreating channel bank (12' over 6 months) = 1,400 cubic yards = 1,540 tons = 3,080 tons/year

X 140

Sediment load (10 cubic yards)

Priority 2 restoration

STREAM WITHIN A FLOOD CONTROL CHANNEL

Establish equilibrium at lower elevation

Priority 2 restoration components

Nature-based solutions for agricultural areas

- Priority 1 stream restoration where possible,
 Priority 2 where the floodplain prohibits
- Maximize out-of-production areas for stormwater detention/retention water quality wetlands
- NRCS Conservation Easement Programs
- NRCS Watershed Assistance & Emergency Watershed Programs

Case Study: Cypress Creek at Meyer Park, Houston

- 189 miles² drainage area
- Sand bed and banks with stiff marine clay outcroppings acting as natural, slowly melting grade control
- Natural, but majority of reaches in area were dredged in the past
- Unstable reaches upstream sending large sediment loads through project reach
- Over-widening threatens park infrastructure and storm sewer outfalls

Reach 1: Pre-improvement

Reach 2: Pre-improvement

Natural channel design and nature-based

improvements

- New Priority 2 NCD channel
- Constructed boulder riffles
- Geomorphic floodplain bench
- Stabilized slopes
- Geomorphic floodplain wetlands
- Grass and tree plantings
- Armored storm sewer outfalls
- Greenway and park trail alignments

During construction

Before and after (2006)

Before and after (2009)

STABLE AND SELF-IMPROVING AFTER 8 BANKFULL EVENTS

11 years later (2017)

STABLE AND SELF-IMPROVING AFTER MEMORIAL DAY FLOOD (2016), TAX DAY FLOOD (2016) AND HURRICANE HARVEY (2017)

Upper Ouachita National Wildlife Refuge

- Mollicy Farms is part of the U.S. Fish and Wildlife
 Service Upper Ouachita National Wildlife Refuge.
- USFWS purchased it from one landowner.
- Mollicy Farms unit is 20,000 acres.
 - 16,000 acres within boundary levee and 4,000 acres outside boundary levee
- About 11,000 acres have been reforested, and about 3 million trees have been planted.

Interior hydrologic modification

Mollicy Levee

Mollicy Farms watersheds

The Nature Conservancy

- Significant watersheds: Shiloh Creek, Deep Slough,
 Mollicy Bayou and Bayou de Butte
- Increasing restoration footprint from 16,000 acres to 76,000 acres of combined uplands and bottomlands

Upper Ouachita impairments

- Total Maximum Daily Load from 2002 found organic enrichment, low dissolved oxygen and high nutrients and called for a 30% non-point reduction.
- Upper Ouachita River Watershed
 Implementation Plan cited Mollicy
 Farms tract as contributing significant sedimentation.

Funding and partnerships

- 2009 federal stimulus money
- Louisiana Department of Environmental Quality
- U.S. Fish and Wildlife Service
- Caterpillar
- Entergy
- Yellow Springs Instruments
- Private donations to The Nature Conservancy

Benefits of floodplain reconnection and restoration at Mollicy Farms

- Creates 25 square miles of floodwater storage for the Ouachita River
- Improves water quality of the Ouachita River
- Significantly decreases the chances of levees breaking near downstream communities during historic flood events
- Provides aquifer recharge
- Provides habitat for wildlife

Project objectives

- Reconnect remnant streams to Ouachita River flood pulse
- Conduct extensive water quality and biological monitoring
- Restore internal hydrology

Levee breach plan

- A design of the location and dimensions of the breaches was created to minimize the potential of scour and head-cutting during flood recession.
- The breaches were positioned to facilitate floodplain flow and water exchange between the Ouachita River and Mollicy Farms.
- The U.S. Army Corps of Engineers granted a permit to the USFWS for the breach design.

2009 flood aftermath

2010 floodplain restoration

Shiloh Creek

Shiloh Creek

Mollicy Bayou

Mollicy Bayou

Biological monitoring

Aquatic invertebrate surveys

Herpetological surveys

Water quality monitoring

Water monitoring stations

Water monitoring stations

Water monitoring stations

Parameters measured:

ISCO

<u>YSI</u>

TSS

TKN

TOC

Ortho-P

Nitrate-Nitrite

Turbidity

рН

Conductivity

DO

рН

Conductivity

Turbidity

Chlorophyll

Temperature

Sediment plume discharge: Mollicy Bayou

Internal hydrology restoration

- The restoration plan was broken down into drainage-based sections.
- It focused on restoring functionality to the floodplain, not historic conditions.
- TNC developed the design and supervised the construction of all interior hydrological restoration work.

Mollicy Bayou Restoration

Mollicy Bayou Restoration

Mollicy Bayou Restoration

Mollicy Bayou Restoration

Finding more places like Mollicy

QUESTIONS CONTACT INFORMATION lforbes@swca.com crice@tnc.org

- f @LAWATERSHEDINITIATIVE
- **■ @LAWATERSHED**
- @LAWATERSHED
- in LOUISIANA WATERSHED INITIATIVE
- WATERSHED@LA.GOV

THANK YOU